
RETRAITER ON NON LES COMBUSTIBLES NUCLÉAIRES USES — ENJEUX ET CONSEQUENCES À LONG TERME

Date: 11 juin 2019

Débat public PNGMDR - Cherbourg

DE LA RECHERCHE À L'INDUSTRIE

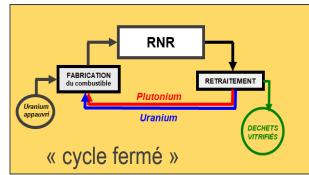
LES RÉACTEURS À NEUTRONS RAPIDES (RNR)

2 caractéristiques

différenciantes:

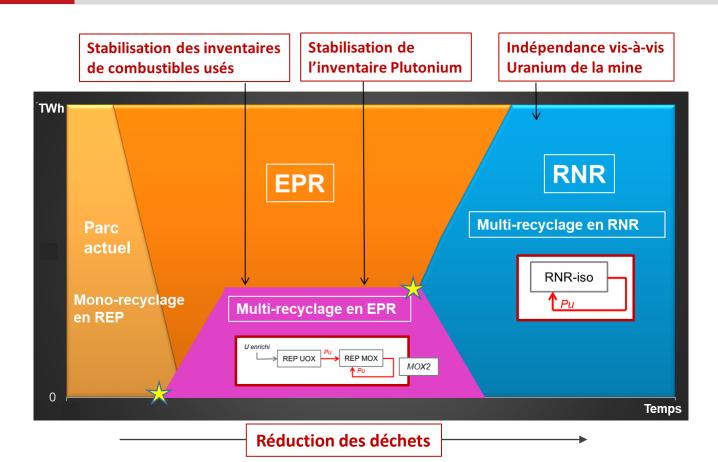
Soutenabilité

- Augmentent l'économie de la ressource uranium jusqu'à la complète indépendance pour un parc 100% RNR
- Réduisent la production de déchets de haute activité et à vie longue (HAVL) par rapport à la stratégie de non-retraitement
 - facteur 6 sur le volume brut de déchets produits,
 - facteur 10 sur le volume des déchets prêts à être stockés
 - offrent des perspectives de réduction accrue de la nocivité à très long terme



Qu'est-ce qu'un réacteur à neutron rapide?

- Principes physiques basés eux aussi sur la fission
- On a remplacé l'eau par un autre milieu : sodium, ou un métal liquide, ou un gaz, ou un sel fondu
- Des caractéristiques particulières qui procurent <u>de nouveaux atouts</u>:


- Meilleure utilisation de l'énergie de l'uranium : 1g d'U en RNR → 100 fois plus d'énergie qu'aujourd'hui

- Permet le multirecyclage de tous les combustibles usés, sans limite de temps
 → diminution des déchets HAVL au global
- Présente en plus des potentialités pour réduire encore davantage la nocivité des déchets ultimes (transmutation)

UN FUTUR ATTEIGNABLE, PAR ÉTAPES SUCCESSIVES

PAGE 4

A CHAQUE ÉTAPE : UNE GESTION AMÉLIORÉE DES **DÉCHETS ET MATIÈRES**

Critères	Sans traitement - recyclage	Mono-recyclage en REP	Multi- recyclage en REP	Multi- recyclage en RNR
Economie ressource Uranium de la mine	0 %	20-25 %	25-30 %	100 %
Evolution Inventaire Plutonium	+ 10 t/an	+ 7 t/an	0	0
Flux de plutonium dans le cycle	1	1	3	9
Volume Combustible usé (entreposé)	1,8 m ³ /TWh	0,35 m ³ /TWh	0	0
Volume Déchets HAVL (verres)	0	0,25 m ³ /TWh	0,50 m³/TWh	0,30 m³/TWh
Déchets MAVL	0,07 m³/TWh	0,90 m³/TWh	1,10 m³/TWh	1,35 m³/TWh

(pour un parc produisant en moyenne 420 TWh/an)

https://www.asn.fr/Informer/Dossiers-pedagogiques/La-gestion-des-dechets-radioactifs/Plan-national-de-gestion-desmatieres-et-dechets-radioactifs/PNGMDR-2016-2018

PAGE 5

LE VERRE, POUR CONFINER LES DÉCHETS HA-VL

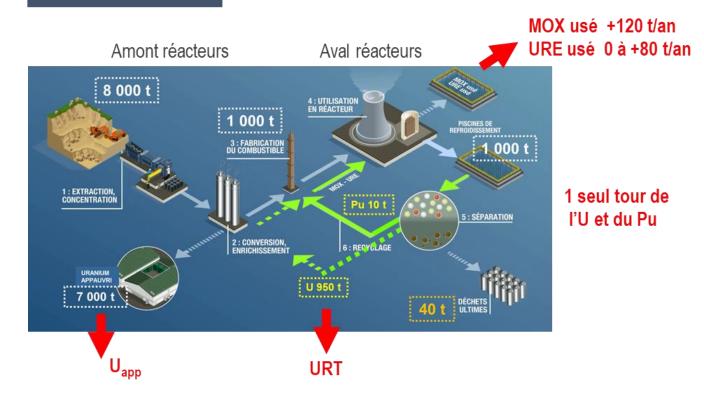
Retraiter le combustible est essentiel à cet égard, combiné avec le recyclage des matières

- Le verre, conçu pour confiner les déchets HA-VL dans la durée :
 - Conditionnement et confinement très efficaces des déchets HA-VL
 - Colis de verre agréé par l'autorité de sûreté
 - Confère immobilisation des éléments radioactifs avant entreposage des déchets, en attendant leur stockage géologique

LE RECYCLAGE DES MATIÈRES EN RÉACTEURS À NEUTRONS RAPIDES : UNE PERSPECTIVE INTÉRESSANTE

- Permet <u>d'économiser la ressource uranium</u> de la mine et augmente le niveau d'indépendance jusqu'à 100%
- Se caractérise par un inventaire en plutonium stable
- Permet de recycler tous les combustibles usés → inventaires stables en entreposage
- Permet de réduire les quantités de déchets HAVL + combustibles usés
- Traiter les combustibles usés pour vitrifier/confiner les déchets HAVL est un atout majeur aujourd'hui et pour demain
- Les recherches accompagnent une approche progressive et réaliste, par paliers, vers le recyclage complet des matières
- La transmutation en constitue le prolongement ultime mais s'inscrit dans une perspective lointaine.

Planches additionnelles


LA GESTION DES MATIÈRES ET DES DÉCHETS AU CŒUR DES ENJEUX DES STRATÉGIES DE CYCLE POUR LE FUTUR

ENJEUX	CRITERES		
Économiser la ressource en uranium (mine) et indépendance énergétique	- Consommation annuelle d'uranium et économie réalisée grâce au recyclage		
Limiter les quantités de combustibles en entreposage / stockage	- Stocks de combustibles usés (UOX, MOX)		
Maîtriser l'inventaire en plutonium	 Inventaire total plutonium en réacteur + cycle Flux annuels de Pu mobilisés au recyclage 		
Minimiser les déchets	- Volumes en entreposage, emprises stockages		
Renforcer l'efficacité économique	Coût de l'électricité, valeur des services rendus et coûts évités		

ET DEMAIN ?... VERS UN RECYCLAGE DES MATIÈRES PLUS ABOUTI

LA SITUATION ACTUELLE

